SIAM J. OPTIMIZATION {©) 1996 Society for Industrial and Applied Mathematics
Vol. 6, No. 4, pp. 1040-1058, November 1996 009

A REFLECTIVE NEWTON METHOD FOR MINIMIZING A
QUADRATIC FUNCTION SUBJECT TO BOUNDS ON SOME OF
THE VARIABLES*

THOMAS F. COLEMAN! AND YUYING LIt

Abstract. We propose a new algorithm, a reflective Newton method, for the minimization of
a quadratic function of many variables subject to upper and lower bounds on some of the variables.
The method applies to a general (indefinite) quadratic function for which a local minimizer subject
to bounds is required and is particularly suitable for the large-scale problem. Our new method
exhibits strong convergence properties and global and second-order convergence and appears to
have significant practical potential. Strictly feasible points are generated. We provide experimental
results on moderately large and sparse problems based on both sparse Cholesky and preconditioned
conjugate gradient linear solvers.
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1. Introduction. In this paper we propose a new algorithm for solving the box-
constrained quadratic programming problem

e 1
(1.1) min {q(m) def Tz + §:ETH1; s l<z< u} .

The matrix H is symmetric and, in general, indefinite; | € {RU {—00}}", u € {RU
{o00}}™, | < u. We denote the feasible region F = {z : | < z < u} and the strict
interior, int(F) = {z : |l <z <u}. When H is indefinite we are interested in locating
a local minimizer.

The purpose of this paper is to motivate and describe our new approach, the
reflective Newton method, and to present the results of computational experiments
designed to investigate practical viability. A companion report [9] proffers supporting
theory and analysis.

Problem (1.1) arises as a subproblem when minimizing general nonlinear functions
subject to bounds, and as a problem in its own right. The box-constrained quadratic
programming problem represents an important class of optimization problems and has
been the subject of considerable recent work (e.g., [1, 4, 11, 14, 13, 17, 19, 20, 22, 24,
26, 27, 30]). A special subclass deserves mention: the box-constrained least-squares
problem

(1.2) min{||Az — b2 : | <z <u},

where A is a rectangular m-by-n matrix with m > n. Our proposed algorithm can of
course be applied to this special case if we use H = AT A and ¢ = — ATb; moreover, it
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is possible to implement a conjugate gradient version of our method without explicitly
forming H = AT A.

We propose a new approach, a reflective Newton algorithm. The algorithm gen-
erates a sequence of strictly feasible iterates, {zx}, which converges under standard
assumptions to a local solution of (1.1), z,, at a quadratic convergence rate. Coleman
and Li [9] establish theoretical properties of the reflective Newton approach applied
to the general nonlinear box-constrained problem—these results apply directly to the
reflective Newton procedure proposed here for the quadratic minimization problem
(1.1).

This new approach has potential advantages over existing methods. The main
advantage appears to be the ability to achieve accurate solutions to large problems in
relatively few iterations. The global and quadratic convergence properties established
in [9] account, in some measure, for this good behaviour. Our numerical results,
reported in §4, support the notion that for a given problem class, the number of
required iterations increases only modestly with problem size. The numerical results
also indicate a remarkable insensitivity to problem conditioning and the degree of
near degeneracy. This is partially explained by the choice of scaling matrix inherent
in our approach; we discuss this subsequently.

The sequence {zx} generated by the algorithm is strictly feasible; therefore, the
algorithm can be regarded as an “interior-point” algorithm. However, this may be
a misleading classification. The algorithm differs markedly from methods commonly
referred to as “interior-point” algorithms. For example, the proposed algorithm does
not use a barrier function to help ensure strict feasibility. The algorithm generates
descent directions for g(z) and then follows a piecewise linear path, reflecting off
constraints as they are encountered. Most interior-point methods, on the other hand,
generate descent directions (for some function) and then restrict the step, along this
straight-line direction, to ensure strict feasibility. The proposed algorithm does not
require the delicate choice or adjustment of a penalty or barrier parameter—no penalty
or barrier function is used—nor does it require that a “central path” be followed.
Indeed the proposed method is robust with respect to starting point.

The algorithm most similar to our current proposal is probably the recent method
due to Coleman and Hulbert [5]. (There is also a strong connection to previous work
by Coleman and Li [6, 7, 8] and Li [21] on various norm minimization problems.)
Both are driven by the nonlinear system of equations representing first-order optimal-
ity conditions. Both methods require piecewise quadratic minimization. The methods
differ in that our new algorithm is more general: positive definiteness of the symmetric
matrix H is not required and it is not necessary to have finite upper and lower bounds
on all the variables—the Coleman—-Hulbert method requires both of these restrictive
properties. Finally, the Coleman—Hulbert method is an exterior-point method, requir-
ing strict decrease in a piecewise quadratic “dual” function, whereas the new method
generates feasible iterates, requiring strict decrease in the original quadratic function
q.

We conclude the introduction with a short review of optimality conditions for
problem (1.1). Define D = D(z) to be a diagonal matrix with the ith diagonal
component equal to |v; (m)ﬁ Vector v;(z) is defined in Figure 1.1, where

g(z) def Vq(z) = Hz +c.
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How to compute v(z):
e If g; < 0 and u; < co then v; = z; — u;.
e If g; >0and l; > —o0 then v; = z; — I;.
e If g; < 0 and u; = co then v; = —1.
e If g; > 0 and [; = —o0 then v; = 1.

FiG. 1.1. Definition of v(z).

The first-order optimality conditions can now be written. If a feasible point z, is
a local minimizer of (1.1) then

(1.3) D2g, =0.
Let Free. denote the set of indices corresponding to “free” variables at point z,:
Free, = {i:l; < (z.)i < u;}.

Second-order necessary conditions can be written.! If a feasible point z, is a local
minimizer of (1.1) then D?g, = 0 and HF"¢¢- > 0, where HF®¢- is the submatrix of
H corresponding to the index set Free,.

These conditions are necessary but not sufficient. To state practical sufficiency
conditions we first need a definition of degeneracy.

DEFINITION 1.1. A point £ € R™ is nondegenerate if for each index i

;=0 = ; <zx; <uj.

With this definition we can state second-order sufficiency conditions. If a non-
degenerate feasible point z, satisfies D2g, = 0 and H¥T®¢~ > 0, then z, is a local
minimizer of (1.1).

2. Motivation. In this section we motivate and explain the basis of the reflective
Newton method. Additional intuition can be gleaned from [9] where greater attention
is paid to the theoretical underpinnings. We begin at the end.

2.1. The end game. As indicated by (1.3), a local solution to (1.1) is a zero of
the nonlinear system

(2.1) D*(x)g(z) =0,

where g(z) “ Hz+c. The system (2.1) is nondifferentiable when either some v; = 0 or
gi; = 0. Let z, be a nondegenerate feasible point satisfying the second-order sufficiency
conditions. If a feasible point z is sufficiently close to z. then a Newton step, s"V(z),
can be defined with respect to system (2.1):

(2.2) sN(z) = —(D%*H + JD%) "1 D%,

where D9 = D9(x) = diag(|g|). Each diagonal element of the diagonal Jacobian
matrix J is defined as follows: If v; equals either z; — u; or z; — [;, then J;; = 1;
otherwise, J;; = 0. In [9] it is established that the damped local Newton sequence,

(2.3) Thy1 = T + agsd

1 Notation: If a matrix A is a symmetric matrix then we write A > 0 to mean A is positive
definite; A > 0 means A is positive semidefinite.
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is a locally quadratically convergent sequence provided {z\} is strictly feasible and
(24) 11— ak| = O(||zk — z.l])-

A crucial observation, proven in [9], is that the distance to the boundary from zy,
along sy, satisfies (2.4). In particular, for each j ¢ Free., [1— (81 );| = O(l|lzx —z.]|),
where (8Y); = %’J—” The positive number (GY); is the distance from zj to the
approaching bound, one of u;, l;, in the direction s{:’ . Also, for j € Free,, (,B,ICV )j — o
as Tr — T.. Therefore, it is possible to choose ay, to satisfy (2.4) and produce feasible
iterates via (2.3). For example, let (B )min = min{(87);} and set ax = (B )min — €k,
where € is a positive number satisfying ex < x|/ Dxgx|| for any positive constant x,.
It immediately follows that o satisfies (2.4) and that {zx}, generated by (2.3), is
strictly feasible. Local and quadratic convergence ensues [9].

We maintain strict feasibility | < z < u at each iteration. Hence, a good way to
compute s}c\’ is to first form My = DyHy Dy, + JxD?, then solve

(2.5) M35, = —Digr,

and finally set s, = Dy3x. Notice that M} is symmetric; moreover, as shown in [9],
M, is positive definite and bounded in a feasible neighbourhood of z,. Furthermore,
it can be argued that the conditioning of My, in a feasible neighbourhood of z, reflects
the conditioning of the original problem (1.1) around z,.

So we have all the ingredients necessary to construct a robust, interior, local, and
quadratic Newton process for (1.1).

Algorithm 1

Fork=1:00
1. Form Mk = DiyHy Dy, + Jsz.
2. Solve MkEkN = —Dggx. Set siv = Dk§,]cv.

3. Compute ﬁ,ﬁvmin; set ax = ;@,Icvmin — €k, where €x < Xa || Digkll-
4. Set Tx4+1 = Tk + OtkskN.

FiG. 2.1. A local (strictly) feasible Newton method.

Algorithm 1 (Figure 2.1) represents a practical interior Newton process. However,
it is clear that this is a local procedure only; the challenge is to extend this approach
to a global method.

2.2. The middle game. Our objective is to devise a global method that
smoothly evolves into Algorithm 1, the fast local procedure discussed above. A com-
mon globalization technique is to generate a descent direction at the current point
for a suitable “merit” function and then take a step along this direction. The most
natural merit function for a strictly feasible algorithm is the objective function itself,
g(z) = ¢’z + 22T Hx. It is easy to see that the Newton step sV, defined by (2.5)
or (2.2), is a descent direction for ¢ in a feasible neighbourhood of a nondegenerate
second-order point z,. The matrix M(x) is positive definite in a feasible neighbour-
hood of z.. Moreover, in [9] we show that the stepsize a = 1 yields sufficient decrease
of g(z) in a feasible neighbourhood of z,. It follows that the calculation of the step
length o described in Algorithm 1 also yields sufficient decrease of ¢(z) in a feasible
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neighbourhood of z,. However, when ||z — z. || is large, M(z) is not necessarily posi-
tive definite, and s"(z) is not necessarily a descent direction for g at z. Indeed, M{z)
may be singular and therefore sV (z) is not necessarily well defined at points remote
from z..

Our solution to this problem is founded on a highly successful technique used in
unconstrained nonlinear minimization: minimize a quadratic approximation subject
to an elliptical constraint. For example, a descent direction sx can be determined by
solving

1
(2.6) msin {sTgk + ESTBks 1Sy |2 < Ak}
or, more generally,
1
(2.7) msin{sTgk—FEsTBks: ||Sk“ls||2 < Ayg, sESk},

where Sy, is a subspace of R™, Sy, is a positive diagonal scaling matrix, By, is symmetric,
and Ax > 0. Appropriate choices of By, S, and Sk yield a descent direction for g(z)
at . However, a most interesting question is how to choose these quantities to enable
a smooth tie-in to Algorithm 1, the local procedure above. Appropriate choices may
surprise. Choose S =D and B=M = [H + JDID~2]. (Recall that D is a diagonal
matrix with the ith diagonal element defined to be |v;(z)2|, i = 1 : n.) Notice that
with this selection (2.6) becomes

1
(2.8) min {ngk + 5§TM,C§ : I3z < Ak} :

with sy = Dy5. Therefore, provided the ball constraint ||5||2 < Ag is inactive near
the solution, problem (2.8) yields sy = s¥’ in a feasible neighbourhood of the solution.
Moreover the solution to (2.7) is also sx = s near the solution provided Sy contains
sV and the elliptical constraint || D} 's||s < A is inactive.

Global convergence properties of optimization algorithms usually require “suffi-
cient decrease” guarantees [12]. While (2.6) and (2.7) can yield a descent direction s
at any feasible point x, it may not be possible to sufficiently decrease g(z) along sj.
The problem is that the feasibility requirement may restrict ax to be very small when
Tk+1 = Tk + aiSk. Sufficient decrease in g(x) may not be possible. Note that, as
indicated above, this inhibiting behaviour cannot occur in a feasible neighbourhood
of z,, but it certainly can occur when zj is far from z. but close to the boundary.

Our solution to this problem has two parts. The first part involves a search
along a piecewise linear path, a reflective path; the second part restricts the descent
directions to have certain desirable properties. We discuss the reflective path idea
first.

Given a feasible point z and an initial descent direction s we define the reflective
path p(a) as follows. First, determine the array BR of breakpoint distances:

(29) BR(Z) = max{(l1 - IL’i) / Si, (’U..,; — .’1:1') / Si)}-

Component BR(i) records the distance from z to the breakpoint corresponding to
variable z; in the positive direction s. The array BR can now be used in the definition
of the piecewise linear (reflective) path p(a) given by Algorithm 2 in Figure 2.2 and
(2.10): for g~ < a < B,

(2.10) pla) =" + (a— B 1)p'.
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Algorithm 2 [Let 8° =0, p! = s, set b =14

Fori=1,...
1. Let ' be the distance to the nearest breakpoint along p*:

A" = min(BR).

2. Define ith breakpoint: b’ = b*~! + (5* — 7 1)p'.
3. Reflect to get new dir'n and update BR:
() p*t =p' , |
(b) For each j such that (b*); = u; (or {b*); = I;)
e BR(j) = BR(j) + |2,
o (p1); = —(p");-

F1G. 2.2. Determine the linear reflective path p.

T2 =u2

n=u

zg = b0

9

F1G. 2.3. A reflective path.

An example of a reflective path is given in Figure 2.3.
If we let x4 1 = Zx + pr(ax) then our sufficient decrease conditions along sk

are as follows: given 0 < 0; < 0, < 1 and a descent direction si, oy satisfies our
approximate line search conditions if

1
(2.11) q(Zk+1) < q(zk) + o1 (akngSk + s af min(si Hs, 0))
and
T 1o . 7T
(2.12) q(zk+1) > @{zk) + 0w | QG Sk + 30k min(sy Hsk,0) |,

where gr = Vg(zx). These conditions are analogous to those suggested by Goldfarb
[18] for use in the unconstrained nonlinear setting. As established in Theorem 2 of
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[9], if boundedness of ¢(z) in F is assumed, then an interval (af,ak), af < ok, can
always be found such that if & € (af,ak) then g(zx + pi{a)) satisfies (2.11) and
(2.12). Condition (2.11) implies an upper bound on «; condition (2.12) gives a lower
bound.

A basic reflective path algorithm for problem (1.1) can now be stated, as Algo-
rithm 3 (Figure 2.4). To allow for flexibility, especially with regard to Newton steps,
we do not always require that both (2.11) and (2.12) be satisfied. Instead, we de-
mand that either both of these conditions are satisfied or (2.11) is satisfied and oy is
bounded away from zero, e.g., ax > p > 0. The latter conditions are used to allow
for the liberal use of Newton steps and do not weaken the global convergence results.

Note that Algorithm 3 generates strictly feasible points; i.e., since z; € int(F), it
follows that zx € int(F).

Algorithm 3 [ p is a positive scalar.]
Choose z; € int(F).
For k=1,2,...
1. Determine an initial descent dir’n si for q at zx . Note that the piecewise
linear path py is defined by zy, si.
2. Perform an approximate piecewise line minimization of g(zy + px(a)),
with respect to a, to determine a; such that
(a) ax does not correspond to a breakpoint,
(b) condition (2.11) is satisfied,
(c) either
i. aj satisfies condition (2.12), or
il. ag >p>0.
3. k1 = zk + pr(an).

F1G. 2.4. A reflective path algorithm satisfying line search conditions.

Satisfaction of the line search conditions in Algorithm 3 is not sufficient to ensure
a first-order convergence result. The convergence analysis given in [9] requires two
additional properties of the search direction sequence {si}: “constraint compatibility”
and “consistency.”

DEFINITION 2.1. A sequence of vectors {sy} is constraint compatible if the se-
quence {Dj sy} is bounded.

DEFINITION 2.2. A sequence of vectors {sy} satisfies the consistency condition
if {s¥'gx} — 0 implies {Drgr} — 0.

Consistency is a standard notion which insists that first-order descent, represented
by the term g;fsk, be consistent with first-order convergence. This is a generalization
of the condition that the angle of the gradient and the descent direction are bounded
away from 90° in unconstrained minimization [12, p. 123|.

Next we illustrate that the constraint compatibility of {sx} enables a sufficiently
long step along si. Consider the following simple result.

LEMMA 2.3. If{sk} is a constraint-compatible sequence then { BRx(j) : BRk(j) =
:E%:g-j—}} is bounded away from zero.

Constraint compatibility avoids running directly into a bound by ensuring that the
stepsizes to breakpoints, corresponding to “correct sign conditions,” remain strictly
bounded away from zero. Specifically, if {s;} is constraint compatible then the pos-

itive distance to constraint j along si, BRy(j) = max{ L ("s(;”)’;)’ , G S’_‘)" }, is strictly
J
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bounded away from zero for any j with the correct sign condition. The correct sign

condition implies a consistency between v; and max{ lj;(k:r)’f ECE € i";’f)j }. The correct
7 J

sign condition holds when (sx);(gx); < 0, and so BRi(j) = l?s}:;;}

When the “sign condition” is violated, i.e., when (s¢);{gx); > 0, then a bound
may be hit after only a short step along si. This is when the reflective line search
idea steps forward: the reflective line search guarantees that the new direction passing
this breakpoint will maintain descent if the bound is encountered soon enough (since
(sx);(gk); > 0).

Several examples of descent directions satisfying both constraint compatibility
and consistency are given in [9]. It is particularly noteworthy that the solution of the
trust region problem (2.6) yields a direction s satisfying both conditions.

3. A practical algorithm. In this section we discuss two specifics of our ap-
proach that turn Algorithm 3 into a viable approach for large-scale problems. The
first aspect is the line search; the second aspect is a particular way to determine the
directions s via (2.6) by choosing a low-dimensional subspace Sy, appropriately.

3.1. The line search. The most natural way to implement the piecewise line
search is in a left-to-right fashion. With some cleverness an exact line search can
be accomplished, moving left-to-right, requiring O(n) work per breakpoint crossed.
Unfortunately, even this linear order of work is too expensive for large-scale problems
with many activities at the solution—the number of breakpoints crossed is propor-
tional to the number of activities at the solution.

A viable solution to this problem is to use an approximate bisection algorithm,
first attempting a unit step, @ = 1, to see if condition (2.11) is satisfied. (It is not
necessary to test condition (2.12) since clearly a unit step is bounded away from zero!)

An important observation is that the point  + p{a) can easily be evaluated, no
need to compute BR or apply Algorithm 2. To see this assume, for simplicity, that
for each i all finite lower bounds equal zero and all finite upper bounds equal unity.
Suppose we wish to evaluate z + p(a). Define y = = + as and define R to be the

reflective transformation, R(y) = = + p(a). The computation of R is described in
Figure 3.1.

To evaluate z; = R(y);
Case 1: I; =0, u; = 1. Set w; = |y;| mod 2, set z; = min(w;, 2 — w;).
Case 2: I; =0, u; = oo. Set z; = |y;|.
Case 3: l; = —o00, u; = 1. If y; <1, set z; = y;; else, set z; =2 —y;.
Case 4: [; = —00, u; = 00. Set z; = y;.

FiG. 3.1. The reflective transformation R.

A bisection (piecewise) line search algorithm which yields a point z,; satisfying
(2.11) and (2.12) can be implemented as follows. Assume z is the current feasible
point and s is the current descent direction at z. As usual, p(a) denotes the piecewise
linear path defined in (2.10). The simple bisection algorithm is given in Figure 3.2.

3.2. Subspace selection. We propose to implement step 1 of Algorithm 3, i.e.,
determine the descent direction si, by solving a problem of the form (2.7):

1
(3.1) msin{sTg;c + 'é‘sTMks : HD,:lng < Ag, s€ Sk} .
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Algorithm 4
o If R(z + s) satisfies (2.11), set & = 1.
e Otherwise
- SetaLZO,aRzl,y:w+%s.
— Repeat until R(y) satisfies (2.11) and (2.12)
* If R(y) violates (2.11), set ar = y;
else if R(y) violates (2.12), set oy = y, end
* Set & = (ap + ar)/2,y =z + as.
e If & corresponds to a breakpoint, set @ = G@—¢, where € < x,||Dg||; otherwise,
set a = @.

F1G. 3.2. The piecewise linear bisection algorithm.

A subspace Sy must be chosen. If we choose S = R™ then strong convergence results
follow [9]; however, this choice is impractical for large problems.

To meet global convergence requirements, the inclusion of the scaled gradient D2g
in Sk (or a direction with a nonzero projection onto the scaled gradient) is useful.
Moreover, asymptotic second-order convergence requires that a good approximation
to the Newton step sY be included in Sy when Mj is determined to be positive
definite. Finally, when M}, is determined to be non-positive definite, it is desirable to
include a direction of negative curvature in Sy if available. That is, include Dywy in
Sy when wf Mjwy < 0. These subspace ideas are similar to those explored in [3] for
unconstrained minimization problems. Coleman and Li {9] show that the consistency
and constraint-compatibility conditions can be satisfied using the two-dimensional
subspace framework.

Thus our practical algorithm has the structure given in Figure 3.3.

Algorithm 5 [ p is a positive scalar.|
Choose z; € int(F).
Fork=1,2,...

1. Determine a two-dimensional subspace Si: if a nonzero vector wy is
found such that wi Mywy < 0, set Sy =< D2Zsgn(gk), Dxwi >; other-
wise, set Sy =< Digk, DkékN >, where .'s'kN approximately solves (2.5).

2. Determine an initial descent dir’n s for g at z: solve (2.6) to determine
sk. Note that the piecewise linear path py is defined by zg, si.

3. Apply Algorithm 4, the approximate bisection minimization of g(zj +
pr(a)), with respect to a, to determine aj such that
(a) ax does not correspond to a breakpoint,

(b) condition (2.11) is satisfied,
(c) either
i. oy satisfies condition (2.12), or
. ag > p>0.
4. Tpy1 = Tk + pr(ok).

Fi1G. 3.3. A practical reflective path algorithm satisfying line search conditions.

Algorithm 5 will locate a second-order point, under reasonable assumptions, when
a constraint-compatible direction sequence {wy} of sufficient negative curvature, rel-
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ative t0 Amin(My), is guaranteed [9]. The computational results we present in this
paper correspond to implementations that do not guarantee that sufficient negative
curvature is found. However, our implementations are globally first-order convergent
and if there is convergence to a second-order point then, under second-order sufficiency
assumptions, a second-order convergence rate can be achieved [9].

We consider two variations of Algorithm 5 in our experimental testing. The two
variations represent different ways to compute the subspace Sy, in step 1 of Algorithm
5; both variations have applicability to large-scale problems.

Variation Cholesky. A sparse Cholesky factorization of a permutation of Mk
is attempted If this factorization completes, then My is positive definite and sk =
—M7 x 15, is computed. Otherwise, a nonzero vector wy, is found such that wy T Mywy, <
0. In our experiments we use the symmetric minimum degree ordering to define a
permutation of My to reduce fill in the Cholesky factor, e.g., [15]. Note that the
ordering step, and determination of potential fill, needs to be done only once for a
given instance of problem (1.1).

Variation conjugate gradients (PCG) We apply a precondltloned conjugate
gradient (PCG) process to the system Mksk = gx until either a vector s,c is found
such that HMksk — k|l < ek for a given tolerance e > 0 or a nonzero vector wg is
generated such that wi Mzwy < 0 [29].

Both variations exhibit a first-order global convergence result; moreover, assum-
ing convergence to a point satisfying second-order sufficiency conditions, variation
Cholesky will generate a quadratically convergent sequence, whereas variation PCG

will yield a superlinearly convergent sequence provided €k goes to zero sufficiently
fast [2].

4. Numerical experiments. We have implemented our algorithm in MATLAB
4.0, a version of MATLAB which allows for sparse matrix data structures [16]. In this
section we present some preliminary numerical results.

For each problem we record the number of required iterations for each of our two
variations of Algorithm 5, Cholesky and PCG. In the PCG approach we use a simple
diagonal preconditioner where the diagonal elements correspond to the 2-norms of the
columns of the corresponding matrix Mj. Our purpose here is not to compare the
overall relative efficiencies of these two variations per se but rather to explore the use
of each approach within the context of the reflective Newton method, Algorithm 5. Is
the number of major iterations required by the reflective Newton method sensitive to
the use of Cholesky versus PCG? How does the number of major iterations grow with
problem size and is this growth dependent on the choice of PCG versus Cholesky?
How does the reflective Newton approach depend on problem characteristics, and is
this dependence related to the choice of PCG versus Cholesky? Of course ultimately
the relative efficiencies of the Cholesky version versus the PCG depend also on the
work required to “solve” each linear system. This, in turn, depends on the usual
factors: sparsity and distribution of eigenvalues. Except for a few remarks at the end
of this section, we do not explore the latter question in this paper.

All experiments were performed on Sun Sparc workstations in the (sparse) MAT-
LAB environment [23].

Starting and stopping. In all the experiments reported in this paper the starting
value of z, ie., z1, is as follows. For component j where both upper and lower
bounds are finite, choose the midpoint, (z1); = L +"’ . If both upper and lower bound
corresponding to component j are infinite in size, choose (z1); = 0. If I; is finite and
uj = 00, choose (z1); = l; + 1; if [; = —oo and u; is finite, choose (z1); = uj — 1.
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(Note: The reflective Newton approach is not particularly sensitive to starting value.
For example, we repeated many of the experiments reported here using a random
(strictly) feasible starting point; very little difference in behaviour was detected.)

Choosing a robust stopping rule in optimization is never easy. Our primary
stopping rule is based on the relative difference in function value. This is reasonable
partly because strict feasibility is always maintained and partly because usually the
real objective in practical optimization is to achieve a point of relatively low function
value. Specifically, our primary stopping rule is

(4.1) q(zk) — g(z11) < tol x (1 + |q(z)])-

We choose tol = 100* . where p is unit roundoff (machine epsilon); i.e., in MATLAB on
a Sun Sparc workstation, p = 2.2204 x* 10~ 6. We do have secondary stopping criteria
as well, designed to determine when progress is deemed too slow. This secondary rule
tends to kick in when solving degenerate or ill-conditioned problems and a very flat
region around the solution has been entered.

Of course the stopping criterion mentioned above does not guarantee a minimizer.
In our numerical experiments reported in this paper, independent verification of op-
timality was performed whenever feasible. The optimal point was known, a priori,
for the positive definite problems. In this case optimality was verified by comparing
the computed function value at the computed solution to the known value (or, in
some cases, the computed function value at the known minimizer). Optimality is
much more difficult to verify for indefinite problems. For these problems, first-order
optimality conditions were verified, and in some cases, when computationally feasible,
second-order optimality was confirmed.

Parameter settings. There are a few preset parameters in the algorithm. Here
are the settings we used in our experiments:

e 0;: used in the line search, see (2.11): we use o7 = .1.

o0,: used in the line search, see {2.12): we use o, = .9.
p: a lower bound on the stepsize, see Algorithm 5: we use p = .1.
Xa: if the line search produces a unit step which turns out to be a breakpoint,
this point is perturbed by an amount bounded by xq||Dkgk|; see {9]: we use
Xo = 1.
e ¢;: used with the PCG variation; we set ¢; = .1 for all k.

4.1. Positive definite problems. We have generated a number of quadratic
test problems with certain properties. In the first set of results we concentrate on
the case where H is symmetric positive definite. In the results reported below we use
sparse matrices H with sparsity patterns representing a three-dimensional grid using
a seven-point difference scheme. The Moré-Toraldo [24] QP-generator was adapted to
generate problems with a given sparsity pattern {see also [5]). We will not review the
generator characteristics here: our generator is a straightforward adaptation of the
Moré-Toraldo scheme to the sparse setting using several sparse MATLAB functions
(e.g., “sprandsym,” “sprand”).

In Tables 4.1-4.3, the dimension of the test problems is n = 1000 in each case.
The parameter “pctbnd” indicates the percentage of variables tight at the solution,
approximately evenly divided between upper and lower bounds. Parameter “deg”
reflects the degree to which the solution is (nearly) degenerate; the larger the value
of deg, the greater the amount of {near) degeneracy. Specifically, at the solution the
gradient g satisfies |g;| < 10~ 9°8 for some of the indices i corresponding to components
of z which are tight at the solution, i.e., z; = u; or z; = [;. Additional discussion
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of this concept is contained in {5]. Parameter “cond” reflects the conditioning of the
matrix H; the condition number of H is approximately 10°°™d,

TABLE 4.1
Positive definite problems, pctbnd = .1, n = 1000.

Cholesky PCG
deg | cond | max avg | max avg
3 3 15 14 16 | 14.7
6 3 16 | 15.6 17 | 16.3
9 3 15 15 16 16
3 6 14 | 127 | 15 14
6 6| 16 | 153 17 16
9 6 15 15 17 | 16.7
3 9 13 | 12.7 14 | 13.7
6 9 16 | 15.3 17 16
9 9 16 | 15.7 17 | 16.3

TABLE 4.2
Positive definite problems, pctbnd = .5, n = 1000.

Cholesky PCG
deg | cond | max | avg | max | avg
3 3 15 15 17 16
6 3 17 17 19 | 18.3
9 3 17 | 16.7 18 18
3 6 16 | 15.3 17 16
6 6 18 | 17.3 19 | 17.3
9 6 17 17 19 | 18.7
3 9 15 | 143 17 | 16
6 9 17 17 18 | 18
9 9 17 | 16.3 18 | 17.7

TABLE 4.3
Positive definite problems, pctbnd = .9, n = 1000.

Cholesky PCG
deg | cond | max avg | max avg
3 3 17 | 16.7 18 | 17.7
6 3 18 | 17.3 19 18
9 3 17 | 16.3 19 | 18.7
3 6 16 | 15.7 | 18 | 16.7
6 6 18 | 17.3 19 | 18.3
9 6 18 | 17.3 18 | 16.7
3 9 16 | 153 | 16 | 15.7
6 9 17 17 18 | 17
9 9 17 | 16.7 18 | 17.7

The upper and lower bound vectors u and [ were generated as follows. Approx-
imately 75% of the components of [ were chosen to be finite and assigned the value
of zero; the index assignment was made in a random fashion. Similarly, approxi-
mately 75% of the components of u were chosen to be finite and assigned the value
of unity. Again, the index assignment was made in a random fashion, independent of
the assignment of [.

Each row of Tables 4.1-4.3 reflects the results of three independent runs with the
same parameter settings. The columns labeled “max” indicate the maximum number
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TABLE 4.4
Positive definite problems: Timing breakdown.

Cholesky PCG
n it | totM | totls it | totM | totls
512 18 11.8 1.7 15 4.5 1.8
1000 | 15 38.5 3.9 | 16 8.4 3.8
1728 | 17 | 133.5 6.1 | 16 16.4 6.7
2744 | 16 533 | 11.4 | 17 33.3 | 12.1
8000 | 15 | 5369 | 29.4 | 17 95.2 | 33.6

of iterations required over the set of three independent runs to achieve the stopping
criteria. The column labelled “avg” records the average number of iterations required
to reach the stopping criteria over the three problems.

Full accuracy, in terms of function value, was achieved for every problem run.
That is, the computed value of the objective function g(z) at the computed solution
matched the computed value of g(z) at the true (known) solution to 15 decimal places.

Observations on Tables 4.1-4.3. First, we observe the remarkable consis-
tency of both versions of the reflective Newton method in these problems. In terms
of iterations required to achieve the stopping criteria and accuracy attained in the
function value, there is apparently very little sensitivity to degeneracy, conditioning,
or number of variables tight at the solution. Of course we do not claim that accuracy
in z is independent of condition/degeneracy—it surely is not. However, it is usually
acceptable in optimization to locate a point with nearly optimal function value, and
we have been quite successful in that (on this test collection).

Second, the absolute number of iterations required to obtain a very accurate so-
lution (in terms of the function value ¢) is modest in every case for both reflective
Newton variations, i.e., less than 20. In general the PCG version required 1-2 addi-
tional iterations compared with the Cholesky version.

It is important to know where an algorithm spends its time. To this end we
generated larger problems, with the same structure, and we have broken down the
timing information. In Table 4.4 we consider a representative positive definite problem
with “average characteristics,” i.e., deg = 6, cond = 6, pctbnd = .5, and we vary
the problem dimension n. (The sparsity structure remains the same.) The second
column, labelled “it,” records the number of iterations required to achieve the stopping
criteria; “totM” records the total number of mega-flops used in the matrix operations
corresponding to each linear system Msy = gx; “totls” records the number of mega-
flops used in the approximate line search algorithm. More than 95% of the total flop
count on these problems is represented by the sum of the totM and totls columns. The
remaining work in the algorithm, such as the two-dimensional trust region solution,
is negligible in comparison.

Observations on Table 4.4. First, there is no significant growth in number of
iterations as the problem dimension n increases for either version. In the Cholesky
variation, the sparse matrix factorization work totM increases relative to the line
search cost totls as n increases; however, this trend is not evident in the PCG version.
For large n the cost of the line search PCG is comparable to the linear solve whereas in
Cholesky the line search cost is dominated by the matrix factorization cost. Therefore,
in the Cholesky variation, speedup of the sparse Cholesky factorization aspect of
the algorithm (e.g., use of parallelism, exploitation of specific particular structure)
will have significant impact on the overall computing time. Conversely, improving
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the approximate line search (in terms of cost) in the PCG version is as crucial as
decreasing the cost of the matrix operations in the linear soive.

In addition to these randomly generated, but structured, positive definite prob-
lems, we have experimented with three specific test cases. Two of these problems are
from the literature (e.g., [11, 25]) and the third example is new. In Tables 4.5 and 4.6
we report on the “obstacle” problem. In the first case there are lower bounds only; in
the second case there are lower and upper bounds. In defining the specific example
used we have chosen the same parameter settings and specific functions used in {25].
Table 4.7 reports on the elastic-plastic torsion problem. Again we used the same
parameters as reported in [24] to define the problem; the parameter “c,” as defined
in [24], was assigned ¢ = 5 in our experiments. The columns labelled “norm” record
the logarithm (base 10) of the reciprocal of the final 2-norms of the vector D?g, a
first-order measure or optimality; see (1.3). For example, if ||D?g|| = 10~7 then the
corresponding norm table entry equals 7.

TABLE 4.5
Obstacle problem: Lower bounds only.

Cholesky PCG
m n | its | norm | its | norm
30 900 | 14 15 | 17 8
40 1600 | 14 | 15 | 14 7
50 2500 | 15 15 | 21 8
60 3600 | 16 14 | 18 7
100 | 10,000 | 15 16 | 17 6

TABLE 4.6
Obstacle problem: Lower and upper bounds.

Cholesky PCG
m n | its | norm | its | norm
30 900 | 12 10 | 12 | 7
40 1600 | 12 16 | 12 7
50 2500 | 13 16 | 13 7
| 60 3600 | 13 16 | 15 9
100 | 10,000 | 14 9] 14 8

TABLE 4.7
Elastic-plastic torsion problem.

Cholesky PCG
m n | its | norm | its | norm
30 900 | 10 15 | 11 6
40 1600 | 11 13 | 11 6
50 2500 | 11 13 | 16 9
60 3600 | 11 14 | 10 5
100 | 10,000 | 10 14 | 12 7

In Table 4.8 we report on a linear spline approximation problem. This type of
problem arises, for example, in a particle method approach to turbulent combustion
simulation [28]. The problem results in a large sparse least-squares problem subject to
nonnegativity constraints on the variables. To set up a sample problem we assume an
m-by-m-by-m three-dimensional grid. Within each cell is a set of particles randomly
located. (We use approximately 10 particles per cell in our experiments.) Each
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TABLE 4.8
Linear spline approzimation.

Cholesky PCG
m n | its | norm | its | norm
30 900 | 15 13 | 14 6
40 1600 | 15 15 | 15 6
50 2500 | 15 15 | 17 7
60 3600 | 15 15 | 17 7
100 | 10,000 | 16 15 | 16 | 6

particle p has a known function value ¢(p). Associate with each grid intersection
point a linear basis function and determine the best set of coefficients, z, for the basis
functions in the least-squares sense subject to nonnegativity constraints on x. The
function ¢ we used in our experiments is defined as follows. Given a point in 3-space,
p = (p1,p2,p3), define

#(p) = .3sin(9.2p; ) sin(9.3p2) sin(9.4p3).

Observations on Tables 4.5-4.8. The most noteworthy observation is the ap-
parent insensitivity of the reflective Newton method to problem size for each of these
problems. The number of iterations does not grow significantly for a given problem
class as the dimension of the problem increases. For example, for the linear spline
problem, 15 iterations are required by the Cholesky variation when n = 900; 16
iterations are required when n = 10,000. Similarly, the PCG variation requires 14
iterations when n = 900 and 16 iterations when n = 10,000. In general, PCG required
a few more iterations to satisfy the stopping criteria than did Cholesky. Moreover,
the accuracy achieved by PCG, in terms of the final norm of D?g, is considerably
worse than Cholesky. The total amount of work is another matter; see Table 4.4 and
subsequent comments.

4.2. Indefinite problems. We have adapted the Moré-Toraldo QP generation
scheme, in combination with sparse matrix functions in MATLAB 4.0, to generate
large sparse indefinite matrices, each with a given sparsity pattern and preassigned
set of approximate eigenvalues. In the indefinite case we chose finite upper and lower
bound vectors, | = 0, u = 1. (We use all finite bounds in the generation of indefinite
problems to avoid the generation of unbounded problems.)

In each of the problems in Tables 4.9-4.11 roughly 10% of the eigenvalues of H
are negative. (In each case the optimality conditions were verified to hold at the final
point.)

Observations on Tables 4.9—-4.11. Iteration counts indicate that the reflective
Newton method is not quite as consistent or efficient on indefinite problems compared
with the performance on positive definite problems. Still, the overall efficiency seems
very good—the average number of iterations required for any problem category is
always less than 23 for Cholesky and less than 26 for PCG.

The difference between PCG and Cholesky, in terms of number of iterations to
satisfy the optimality conditions, is greater on the set of indefinite problems than on
the positive definite set. It is not clear why this is the case.

In Table 4.12 we indicate where the algorithm spends its time on indefinite prob-
lems by considering a representative example and increasing the dimension.

Remark on Table 4.12. We see little growth in required iterations for either
variation as n increases. Clearly the totM column dominates the totls column as



REFLECTIVE NEWTON METHOD 1055

TABLE 4.9
Indefinite problems, pctbnd = .1, n = 1000.
Cholesky PCG
deg | cond | max | avg | max | avg
3 3 18 | 16.7 21 20
6 3 19 17 22 21
9 3 23 | 193 22 | 21.3
3 6 14 | 13.7 19 | 18.3
6 6 32 | 22.7 25 | 22.7
9 6 26 | 21.7 24 | 22.7
3 9 15 14 24 21
6 9 16 | 15.7 24 22
9 9 16 | 15.7 25 | 21.7

TABLE 4.10
Indefinite problems, pctbnd = .5, n = 1000.

Cholesky PCG
deg | cond | max | avg | max | avg
3 3 17 | 15.7 24 | 20
6 3 19 18 24 | 223
9 3 18 | 16.7 25 25
3 6 15 | 13.3 21 19
6 6 18 | 17.3 | 28 | 23.3
9 6 19 | 17.7 25 | 23.6
3 9 14 | 11.3 28 23
6 9 16 | 15.7 19 | 18.3
9 9 25 | 18.3 23 | 21.7

n increases for the Cholesky version; in the PCG variation the totM and totls are
comparable. Recall that totM represents the matrix flop count for the linear solve
while totls represents the number of total mega-flops required by the line search
procedure. Again, for large n the cost of the line search PCG is comparable to the
linear solve, whereas in Cholesky the line search cost is dominated by the matrix
factorization cost. Therefore, to obtain further improvements in efficiency of the
Cholesky variation it is best to focus on the matrix factorization aspect of the overall
procedure. Equal attention must be given to both aspects, line search and linear
solve, in the PCG variation.

Overall remarks on computational experiments. As mentioned above, the
purpose of the experimental study is not to compare the PCG variation with the
Cholesky variation in terms of overall efficiency. Rather, the purpose is to study the
numerical behaviour of two possible implementations of the reflective Newton strat-
egy. Our numerical results indicate that either implementation, PCG or Cholesky,
is credible within this framework. The best choice between these two variations is
problem dependent. In most of our experiments Cholesky required slightly fewer iter-
ations but often significantly more time—witness Tables 4.4 and 4.12. On the other
hand, there certainly are situations where the Cholesky variation is more economical.
For example, in Table 4.13 we present the result of our experiments with a quadratic
problem based on the evaluation of the Hessian matrix in [10]. In this case Cholesky
is the clear winner in terms of operation count.

In the PCG variation, the fundamental subtask in both the line search and the lin-
ear solve operations is multiplication between the Hessian matrix and several vectors.
The number of Hessian—vector products for our implementation of the PCG variation
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TABLE 4.11
Indefinite problems. pctbnd = .9, n = 1000.

Cholesky PCG
deg | cond | max | avg | max | avg
3 3 16 | 13.3 22 21
6 3 18 16 26 | 21.3
9 3 16 11 33 24
3 6 13 12 20 | 17.7
6 6 14| 13 19 17
9 6 16 | 14.3 30 | 25.7
3 9 12 | 11.3 | 19 18
6 9 15 | 13.7 17 | 16.7
9 9 15 | 12.7 19 | 16.7

TABLE 4.12
Indefinite problems: Timing breakdown.

Cholesky | PCG
n it | totM | totls it | totM | totls
512 17 | 10.8 2.1 18 2.5 2.3
1000 | 19 38.2 49 | 25 7.4 6.8
1728 | 22 | 115.5 9.1 | 19 9.4 8.2
2744 | 24 | 396.6 | 16.4 | 24 18.3 | 16.7
8000 | 32 | 5030 69 | 31 784 | 67.8

averaged about 10 * it plus the total number of conjugate gradient iterations. Our
implementation of the Cholesky variation averaged 10 * it Hessian—vector products.

5. Concluding remarks. The reflective Newton idea represents a new interior
approach to box-constrained minimization problems. A convergence theory establish-
ing global and second-order convergence results is presented in [9]; in the present paper
we have provided a motivation of this approach and given results of computational ex-
periments for sparse quadratic (indefinite) objective functions. The numerical results
strongly support the notion that this approach is attractive for solving large sparse
box-constrained quadratic programs.

Two variations of the reflective Newton method for box-constrained quadratic
programs have been proposed in this paper. The Cholesky variation attempts a
sparse Cholesky factorization in each iteration. The matrix to be factored has the
same structure as the original Hessian matrix H and ultimately turns positive definite
in the neighbourhood of a strong local minimizer. If the factorization fails then the
matrix is not positive definite and a direction of negative curvature is usually available.
The reflective Newton method uses this direction to help locate the next point. The
PCG variation attempts to solve a local “Newton” system, each major iteration k,
via PCG iterations. If negative curvature is found in the process, which may happen
far from the solution {but not in a neighbourhood of the solution), then the PCG
process is aborted and the reflective Newton method uses the negative direction to
help locate the next point.

Regardless of which linear solver is used, the reflective Newton method then
proceeds by solving a two-dimensional trust region problem to locate an initial feasible
descent direction. A simple one-dimensional reflective path search is then performed
to locate an improved point. We show how to efficiently implement an approximate
search along this piecewise linear path.

Note that this approach does not involve an artificial “merit” function such as a
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TABLE 4.13
Problem var.
Cholesky PCG
n it | m-flops it | m-flops
1000 | 16 6.1 | 16 14.1
5000 | 17 | 329 | 14 62.7
10,000 | 17 65.9 | 17 225.3

barrier function—no delicate choice of barrier or penalty parameter is needed—nor
does a “central path” need to be followed. These are potential advantages of this
proposed new method. Moreover, our computational experiments to date indicate
that this approach has considerable promise as a robust and efficient way to solve
large box-constrained quadratic programs.
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